Monatshefte für Chemie 109, 929-941 (1978)

Monatshefte für Chemie © by Springer-Verlag 1978

Beitrag zur Kenntnis des Systems Vanadin-Chrom-Stickstoff

Peter Ettmayer*, Walter Schebesta^a, Alfred Vendl und Richard Kieffer*

Institut für chemische Technologie anorganischer Stoffe, Technische Universität Wien, A-1060 Wien, Österreich

(Eingegangen 14. Juli 1977)

Contribution to the System V-Cr-N

The System V—Cr—N has been investigated at 1100 and 1400 °C and at nitrogen pressures between 1 and 1000 atmospheres by X-ray techniques. VN and CrN on the one hand and V_2N and Cr_2N on the other are forming complete series of solid solutions. The phase field of the mononitride solid solution is dependent on nitrogen pressure and temperature conditions.

Einleitung

Im Vergleich zu den Carbidsystemen der Übergangsmetalle^{1,2} sind unsere Kenntnisse über die Nitridsysteme noch immer als sehr lückenhaft zu bezeichnen. Während die binären Systeme der Übergangsmetalle mit Kohlenstoff in der Regel gut bekannt sind und auch Daten über ternäre oder quaternäre Systeme vorliegen, sind solche über die analogen Nitridsysteme nur spärlich zu finden. Erst aus jüngerer Zeit liegt eine systematische Untersuchung vor über die Mischbarkeit der kubischen Mononitride vom B1-Typ untereinander und mit den isotypen Carbiden^{3,3a}.

Die bei den Carbiden schon seit langer Zeit bestätigte Gültigkeit der Volumsregel nach *Hume-Rothery* gilt auch für die Nitride; Mischungslücken werden in den pseudobinären Systemen ZrN-VN und HfN-VN beobachtet³. Auch im System ZrN-CrN tritt eine Mischungslücke auf, die sich bei 1440 °C schließt, im pseudobinären System HfN-CrN wird bei Temperaturen oberhalb 1000 °C jedoch keine Mischungslücke beobachtet⁴. In den Systemen Cr-Nb-N und Cr-Ta-N wird zwischen 1100 und 1400 °C keine volle Mischbarkeit der

^a Auszug aus der Diplomarbeit des Herrn Dipl-Ing. Dr. W. Schebesta.

isotypen Phasen Cr₂N und Nb₂N bzw. Cr₂N und Ta₂N beobachtet. offenbar wegen des Auftretens von ternären Verbindungen vom Typ der Z-Phase NbCrN und Ta_{1+x}Cr_{1-x}N^{5, 6}.

In diesem Zusammenhang erscheinen systematische Untersuchungen im System V—Cr—N zur Vervollständigung interessant. Die binären Randsysteme Cr—N und V—N weisen je zwei Verbindungen vom Typ TN und T_2N (T = Übergangsmetall) auf. Die Mononitride kristallisieren im B1-Typ, die Subnitride im ε -Fe₂N_{1-x}-Typ⁶. Nach der Volumsregel von Hume—Rothery ist für die beiden quasibinären Systeme VN—CrN und V₂N/Cr₂N lückenlose Mischbarkeit zu erwarten.

Die Randsysteme

Das System Chrom-Vanadin

Chrom wie Vanadin kristallisieren im kubisch raumzentrierten A2-Typ. Die Gitterkonstanten betragen für Chrom a = 2,8839 Å⁷ und für Vanadin a = 3,027 Å nach *Hörz*⁸ bzw. a = 3,0231 Å nach *Brauer* und *Schnell*⁹. Im System Chrom—Vanadin besteht lückenlose Mischbarkeit der festen Phase in allen Temperaturbereichen. Die Mischkristallreihe hat ein Schmelzpunktminimum bei 1750 °C und 69,5 At % Cr. Die Gitterparameter der Legierungen zeigen eine leicht negative Abweichung von der *Vegard*schen Additivitätregel⁷.

Das System Vanadin-Stickstoff

Zwei Phasen, die von $Hahn^{10}$ beschrieben werden, können als gesichert angenommen werden, nämlich die hexagonal kristallisierende Subnitridphase V_2N_{1-x} und die kubisch-flächenzentriert kristallisierende Mononitridphase VN_{1-x} .

 $H\ddot{o}rz^8$ stellte eine Löslichkeit von Stickstoff in Vanadin bis 5 At % Stickstoff fest, wobei der Gitterparameter linear um 0,0048 A pro At % Stickstoff steigt.

Das Subnitrid V₂N_{1-x} ist isotyp mit ε -Fe₂N_{1-x} mit geordneter Verteilung der Stickstoffatome in den Oktaederlücken. Nach Hahn¹⁰ liegt die stickstoffreiche Grenze des Homogenitätsbereiches (1000—1100 °C) bei 30 At % N, nach Brauer u. a. ⁹ bei 32,8 At %. Im Gleichgewicht mit stickstoffgesättigtem Vanadinmetall enthält V₂N_{1-x} bei derselben Temperatur 28,3 At % N. Die Gitterabmessungen betragen in Abhängigkeit vom Stickstoffgehalt nach Hahn⁸: 30 At % N; a = 4,911 Å, c = 4,541 Å, für 28,3 At % N a = 4,904 Å, c = 4,533 Å.

Der Homogenitätsbereich der VN_{1-x} -Phase (B1-Typ) erstreckt sich nach Messungen von *Brauer* u. a.⁹ von 41.9 At % bis 50 At % N, der Gitterparameter ändert sich linear mit dem Stickstoffgehalt von 4,0662 Å bei 41,9 At % N bis 4,1398 Å bei 50 At % N₂ im Temperaturgebiet 1100—1400 °C (Sauerstoffgehalt der Proben < 0,1 Gew %).

Rostoker und Yamamoto¹² nehmen eine weitere Nitridphase bei der Zusammensetzung VN_{0,19} mit tetragonal-basiszentriertem Gitter an, dessen Gitterabmessungen sie mit a = 2.964 kXE und c = 3.388 kXE beschrieben. Da eine Vanadinoxidphase mit sehr ähnlichem Gitteraufbau und fast gleichen Gitterparametern existiert, liegt die Vermutung nahe, daß diese Phase sauerstoffstabilisiert ist.

Das System Chrom-Stickstoff

Es existieren zwei Verbindungen der Zusammensetzung CrN und Cr₂N. CrN kristallisiert im B1-Typ mit a = 4,14 Å; CrN besitzt einen nur schmalen Existenzbereich. Schon bei 1080 °C spaltet CrN unter Atmosphärendruck Stickstoff ab und geht in Cr₂N über¹³.

Die Phase Cr₂N kristallisiert im ε -Fe₂N-Typ¹⁴. Sie weist einen deutlichen Homogenitätsbereich auf. Während die Phasenzusammensetzung im Gleichgewicht mit CrN nahe bei 33 At % N liegt und von der Temperatur nur wenig abhängig ist, ist die Lage der Phasengrenze im Gleichgewicht mit stickstoffgesättigtem Chrommetall stark temperaturabhängig. Die Grenzzusammensetzung liegt nach *Mills*¹⁵ bei 900 °C bei 29,2 At % N, bei 1000 °C bei 26,9 At % N, nach *Schwerdtfeger*¹³ bei 1100 °C bei 27,6 At % N und bei 1200 °C bei 26,3 At % N. Die Löslichkeit von Stickstoff in Chrom ist gering. Sie beträgt bei 1100 °C 0,04 Gew % Stickstoff¹³.

Experimenteller Teil

Ausgangsmaterialien

Chrom: Elektrolyt-Chrompulver der Gesellschaft f. Elektrometallurgie, Nürnberg. Analyse: O: 0,04 Gew %, N: 0,02 Gew %.

Vanadin: Vanadinpulver der Gesellschaft für Elektrometallurgie, Nürnberg. Analyse: 0:0,35 Gew %, N:0,01 Gew %.

Vanadinblech der Gesellschaft für Elektrometallurgie, Nürnberg. Analyse: 0:0.02 Gew %, N:0.05 Gew %.

Vanadinspäne von H. C. Starck, Goslar. Analyse: O: 0,04 Gew%, N: 0,04 Gew%.

Stickstoff: Reinststickstoff der Fa. AGA, Wien, Analyse: 60 ppm O2.

Argon: der Fa. AGA, Reinheit 99,95%. Argon wurde als Schutzgas beim Lichtbogenschmelzen verwendet. Zur Reinigung wurden vor dem Niederschmelzen der Proben Titan- und Zirkoniumgetter 4 Min. aufgeschmolzen.

Die entsprechenden Mengen der beiden Metallpulver wurden vermischt, zu Pillen verpreßt und im Lichtbogen aufgeschmolzen. Zur Erschmelzung besonders sauerstoffarmer Legierungen wurde Vanadinpulver, das einen relativ hohen Sauerstoffgehalt aufwies, durch Vanadinblech bzw. durch Vanadinspäne ersetzt.

Geräte

Zur Nitridierung der Proben unter Normaldruck und zur Drucknitridierung bis 30 atm Stickstoff stand ein Mitteldruckautoklav der Fa. Degussa, Ofenbauabteilung, Wolfgang bei Hanau, zur Verfügung.

Für Drucknitridierung bis 1000 atm wurde ein nach eigenen Plänen¹⁶ konstruierter Hochdruckautoklav verwendet.

Als Heizelement diente im Mitteldruckautoklav ein Graphitheizrohr, im Hochdruckautoklav ein in den Druckkörper eingepreßtes Molybdänrohr, das gegen die Drucktopfwandung durch Quarzwolle thermisch isoliert war.

Die Temperaturmessung erfolgte im Mitteldruckautoklav mit Hilfe eines in den Heizraum druckfest eingeführten Thermoelements (Pt-PtRh), sowie pyrometrisch durch ein Quarzfenster. Im Hochdruckautoklav wurde die Temperatur mittels Testlegierungen mit bekanntem Schmelzpunkt bestimmt. Diese Methode erlaubt eine Temperaturangabe von ± 40 °C.

Die Druckmessung erfolgte bei beiden Autoklaven mit Hilfe von Manometern. Um von Anfangsdrücken ausgehen zu können, die über dem üblicherweise in der Stahlflasche herrschenden Druck von 150—200 at liegen, wurde vor das Einlaßventil eine Kühlfalle aus Monel-Stahl in die Druckleitung eingeschaltet, in der der Reinstickstoff verflüssigt wird. Nach Aufheben der Außenkühlung verdampft allmählich der kondensierte Reinstickstoff aus der Stahlbombe in den Autoklavenraum und baut dort den gewünschten Druck auf¹⁷.

Herstellung von Proben im Bereich der Subnitridphase

Nitrid-Präparate, die durch Nitridierung der lichtbogen-geschmolzenen Ausgangslegierungen mit Stickstoff bei Normaldruck bzw. 30 at hergestellt worden waren und deren Stickstoffgehalt bekannt war, wurden mit den ihnen entsprechenden Ausgangslegierungen so gemischt, daß die Zusammensetzung ungefähr dem gewünschten Stickstoffgehalt entsprach; von diesen Mischungen wurden je etwa 0,2 Gramm in Aluminiumoxidröhrchen gefüllt, die ihrerseits in evakuierte Quarzröhrchen eingeschmolzen wurden. Ein direkter Kontakt der Proben mit dem Quarzglas war wegen der Reaktion der Proben mit dem Quarzglas nicht zielführend.

Die Wärmebehandlung der eingeschmolzenen Proben erfolgte bei 1100 °C, 72 Stdn. lang, bei 1300 °C 50 Stdn. lang, was zur Einstellung des Gleichgewichtes ausreichte. Nach Ablauf der Temperzeit wurden die Quarzröhrchen in Wasser abgeschreckt.

Herstellung von Proben im Bereich der Mononitridphase

Die Nitridierung von Proben im Bereich der Mononitridphase erfolgte im Mitteldruckautoklav bei 1 at, 5 at, 10 at und 30 at Stickstoff bei 1100 °C und 1400 °C. Bei 1400 °C wurden zusätzlich einige Versuche bei 550 und 1000 at Stickstoffdruck durchgeführt. Die zur Gleichgewichtseinstellung ausreichenden Temperzeiten betrugen für 1100 °C: 96 Stdn. für 1 at, 72 Stdn. für 5 at, 65 Stdn. für 10 at und 48 Stdn. für 30 at Stickstoffdruck; für 1400 °C: 24 Stdn. für 1 at. 14 Stdn. für 5 at, 12 Stdn. für 10 at und 8 Stdn. für 30 at Stickstoffdruck.

Röntgenographische Untersuchungen

Die Bestimmung der in den Nitridierungsprodukten auftretenden Phasen erfolgte mit Hilfe von Debye-Scherrer-Aufnahmen nach der asymmetrischen

Chemische Zusammensetzung		$\begin{array}{c} \text{Phasen}\\ M\text{N} & M_2\text{N}\\ (\text{Gitterparameter})\\ & (\text{Intensität}) \end{array}$			
At%Cr	At%V	At % N	a, Å	<i>a</i> . Å	<i>c</i> , Å
0	50.3	48.7	4,135		
2.6	49.2	48.2	4.128		
3,7	48,8	47,5	4,124		
6,4	46.0	47,6	$4,\!123$		
13,8	38,7	47,5	4,124		
19,2	34,0	46,8	4,114		
26,3	27.3	46,4	4,113		
28,8	26,0	45,2	4,102		
37,2	20,7	42,1	4,002		
45,3	14,9	39,8	4,071 (st)	(sss)	n. b.
55,1	8,8	34,1	4,070 (m)	4,815	4,491 (m)
63,8	2,7	$33,\!5$		4,814	4,488 (st)
67.2	0	32.8		4.807	4.478 (st)

Tabelle 1. Analysenergebnisse und Phasen. Versuchsbedingungen: 1100 °C und 1 at N_2 . Reaktionszeit: 96 Stdn.

sss = Sehr schwach, m = mittel, st = stark, n. b. = nicht bestimmt.

Tabelle 2. Analysenergebnisse und Phasen. Versuchsbedingungen: 1100 °C und 5 at N₂. Reaktionszeit: 72 Stdn.

Chemisch	e Zusammen	setzung	MN (Gitt	Phasen erparamete	M_2 Ner)
At%Cr	At % V	At % N	(I a, Å	ntensität) a. Å	<i>c</i> , Å
0	51,1	48,9	4,137		
$2,\!6$	49,0	$48,\!4$	4,135		
6,3	45,4	48,3	4,135		
7,7	43,9	48.4	4,134		
10,4	$41,\!5$	48,1	$4,\!135$		
18,8	33,3	47,9	4,134		
$25,\!6$	26,5	47,9	4,131		
27,7	25,0	$47,\!3$	4,130		
33,3	18,1	$48,\! 6$	4,132		
38,7	12,7	$48,\! 6$	4,134		
41,0	10,2	48,8	4,136		
44,1	7,1	48,8	4,140		
48,4	2,3	49,3	4,147		
55,5	0	44,5	4,147(m)	4,811	4,486(m)

Methode von *Straumanis* mit Chrom K_{α} -Strahlung. Die Gitterparameter wurden mit Hilfe eines registrierenden Röntgengoniometers der Fa. Philips mit CuK_a-Strahlung bestimmt.

Chemische Analysen

Zur Analyse der Ausgangslegierungen und der nitridierten Produkte auf ihren Stickstoff- und Sauerstoffgehalt wurde das Analysengerät Exhalograph der Fa. Balzers (Liechtenstein) verwendet. Die Proben wurden nach der

Tabelle 3. Analysenergebnisse und Phasen. Versuchsbedingungen: 1100 °C und 10 at N₂. Reaktionszeit: 65 Stdn.

Chemis	che Zusamm	ensetzung	MN (Gitte (I	Phasen erparameter ntensität)	M_2 N
${\rm At}\%{\rm Cr}$	$\operatorname{At} \% V$	At % N	$a, \mathrm{\AA}$	$a, \mathrm{\AA}$	$c,{ m \AA}$
0	51.0	49.0	4.137		
2.6	48.5	48.9	4,136		
7,7	43,9	48,4	4,133		
10,3	41,1	$48,\! 6$	4,135		
25,4	26,4	48,2	4,132		
33,4	18,1	48,5	4,134		
38,5	12,7	48,8	4,137		
40,9	10,2	48,9	4,139		
44,1	7,2	48,7	4,138		
48,3	2,3	49,4	4,147		
$54,\!4$	0	$45,\! 6$	4,147 (m)	4,827(m)	4,521

Methode von Paesold u. a.¹⁸ analysiert. Der Gehalt an O lag in allen Fällen unter 0.4 Gew %, Kohlenstoff war stets unter 0,2 Gew % zugegen. Zur Überprüfung der Heißextraktions-Analysenwerte für den Stickstoffgehalt von Vanadinnitriden schien es angebracht, den Stickstoffgehalt auch durch naßchemische Analyse zu ermitteln. Nach Auflösen der Proben in H₂SO₄ unter Zugabe von K₂SO₅ und K₂SO₄ wurde die Stickstoffbestimmung nach Kjeldahl durchgeführt. Es ergab sich gute Übereinstimmung.

Da ein Autoklav mit einem Kohleheizrohr betrieben wurde, war es notwendig, den Kohlenstoffgehalt der Proben unter Kontrolle zu halten. Von jeder Charge wurden stichprobenartig Kohlenstoffanalysen mit Hilfe einer automatischen, relativ-konduktometrischen Kohlenstoffbestimmungsapparatur der Fa. Wösthoff, Bochum, durchgeführt.

Die Metallanteile der Legierungen wurden durch Rö-Fluoreszenzanalyse bestimmt.

Ergebnisse

Die Ergebnisse der Untersuchungen bei 1100 und 1400 °C im Druckbereich 1—30 at bzw. 550 und 1000 at sind in den Tab. 1—8 und Abb. 1—3 zusammengefaßt.

Chemische Zusammensetzung		MN (Phasen M_2 Gitterparamete (Intensität)	N er)	
At % Cr	At % V	At % N	a, Å	<i>a</i> , Å	<i>c</i> , Å
0	50.9	49 1	4 138		
$\tilde{2.6}$	48.4	49.0	4.137		
7,1	43,8	49,1	4,137		
12,8	37,9	49,3	4,136		
18,8	32,2	49,0	4,136		
25,2	25,9	48,9	4,136		
33,4	$17,\! 6$	49,0	4,139		
38,3	12,5	49,2	4,141		
42,9	7,9	49,2	4,144		
48,0	2,5	49,5	4,148		
50,5	0	49,5	4,149		

Tabelle 4. Analysenergebnisse und Phasen. Versuchsbedingungen: 1100 °C und 30 at N₂. Reaktionszeit: 48 Stdn.

Tabelle 5. Analysenergebnisse und Phasen. Versuchsbedingungen: 1400 °C und 1 at N_2 . Reaktionszeit: 24 Stdn.

Chemise	he Zusammer	nsetzung	Pl MN (Gitter)	hasen parameter)	M ₂ N
At % Cr	At%V	$\operatorname{At} \% N$	(Inta, Å	ensität) a, Å	c, Å
0	53,2	46,8	4,121		
3,7	49,7	$46,\! 6$	4,112		
6,5	46,9	$46,\! 6$	4,113		
14,7	41,7	$43,\! 6$	4,089		
20,1	35,6	44,3	4,091		
28,4	29,4	42,2	4,078		
39,4	27,3	42,3	4,078(st)		
	21.4	39,2	4,049 (st)	4,818	4,818(s)
48,4	16,0	35,6	n.b.(m)	4,818	4,496(m)
58,7	$_{9,4}$	31,9	_	4,817	4,494
65,3	3,2	31,5		4,803	4,473
68, 6	0	31,4		4,795	4,469

st = Stark, m = mittel, s = schwach.

Die isotypen Phasen VN und CrN sind im untersuchten Temperaturbereich lückenlos miteinander mischbar, wie auch auf Grund des geringen Unterschieds in den Gitterkonstanten bzw. Molvolumina zu erwarten war.

Chemische Zusammensetzung		MN	Phasen M_2N (Gitterparameter)		
At % Cr	At % V	At % N	a, Å	a, Å	.c, Å
0	52,6	47,4	4,126		
2,7	50,2	47,1	$4,\!116$		
8,1	46,2	45,7	4,101		
19,9	35,3	44,8	4,098		
29,2	26,4	44,4	4,097		
36,5	19,9	43,6	4,098		
43,1	14,2	42,7	4,086		
45,7	11,4	42,9	4,088		
53,3	8,5	$_{38,2}$	4,055(s)	4,823	4,501(st)
63,7	3,1	33,2		4,817	4,493
66.6	0	33.4		4.812	4.486

Tabelle 6.	Analysenergebnisse	und Phasen.	Versuchsbedingungen	: 1400	°C und
	$5\mathrm{at}\mathrm{N}_2$. Reaktionsz	eit : 14 Stdn.		

Tabelle 7. Analysenergebnisse und Phasen. Versuchsbedingungen: 1400 °C und $10 {\rm ~at~N_2}$. Reaktionszeit: 12 Stdn.

Chemische Zusammensetzung		MN	Phasen	W N	
At %Cr	At % V	At % N	a, Å	Fitterparamete (Intensität) a, Å	<i>m</i> ₂ N r) <i>c</i> , Å
0	51.6	48.4	4.132		
3,7	48.7	47.6	4,123		
14.1	39.6	46.3	4.111		
19.8	35,3	44.9	4.094		
27.6	28,7	43.7	4,085		
36,5	19.9	$43,\!6$	4,092		
48.9	8.5	42.6	4.082		
$51,\!5$	8,3	40,2	4,076(st)	4,826	4,474 (ss)
62,2	3,0	$34,\!8$		4,820	4,468 (st)
66,1	0	33,9		4,815	4,467 (st)

st = Stark, ss = sehr schwach.

Die Ausdehnung des Phasenfeldes (V.Cr)N ist vom Stickstoffdruck und von der Temperatur abhängig, was sich vor allem in der Nachbarschaft der thermodynamisch weniger stabilen Randphase CrN auswirkt. In Abb. 2 ist der Einfluß des Stickstoffdruckes besonders klar

•

Tabelle 8. Analysenergebnisse und Phasen. Versuchsbedingungen: 1400 °C und $30 \text{ at } N_2$. Reaktionszeit: 8 Stdn.

st = Stark.

* Die Beugungslinien dieser Phase sind sehr breit, der Gitterparameter ist auf die stickstoffreiche Seite des Gemisches bezogen.

** Die Linien der hexagonalen Chromsubnitridphase sind schwach und unscharf.

Chemise	he Zusamme	nsetzung		Phas MN	en M_2 I	N
At % Cr	At % V	At % N	Dı at	(Gitterpar ruck (Intens a, Å	ameter) sität) a, Å	<i>c</i> , Å
$0 \\ 2,6 \\ 7,7$	$51,2 \\ 48,9 \\ 43,4$	$\begin{array}{c} 48.8 \\ 48.5 \\ 48.9 \end{array}$	$550 \\ 1000 \\ 550$	$4,135 \\ 4,133 \\ 4,137$		

erkennbar: je niedriger der Stickstoffdruck über dem Bodenkörper (V.Cr)N eingestellt wird, desto mehr wird das Phasenfeld eingeengt.

Der Verlauf der Gitterparameter der festen Lösung (V.Cr)N in der Nähe der stöchiometrischen Zusammensetzung zeigt eine deutlich negative Abweichung von der Additivitätsregel (Abb. 4). Es ist anzunehmen, daß diese, bei Phasen mit so ähnlichem Molvolumina eher

Abb. 1. Phasendiagramm des Systems Cr—V—N bei 1100 °C und Drücken von 1 at N_2 , 5 at N_2 , 10 at N_2 und 30 at N_2 . Phasengrenze, ------ Phasengrenze nicht bestimmt, *a* Phasengrenze für 1 at N_2 , *b* Phasengrenze für 5, 10, 30 at N_2

Abb. 2. Phasendiagramm des Systems Cr—V—N bei 1400 °C und Drücken von 1 at N_2 , 5 at N_2 , 10 at N_2 und 30 at N_2 . *a* Phasengrenze für 1 at N_2 . *b* Phasengrenze für 5 at N_2 , *c* Phasengrenze für 10 at N_2 . *d* Phasengrenze für 30 at N_2 , ---- Phasengrenze nicht bestimmt

Abb. 3. Verlauf der isoparametrischen Linien im System VN_{1-x} --Cr N_{1-x}

Abb. 4. Verlauf des Gitterparameters im pseudobinären System VN-CrN

Abb. 5. Phasendiagramm des ternären Systems Cr-V-N

Chemische Zusammensetzung			$M_2 \mathrm{N}$	hasen MN	
At % Cr	At % V	At%N	(Inte	ensität)	
0	86.3	13,7	$^{\rm st}$	$^{\mathrm{st}}$	
11,5	71,4	17,1	st	m	
29.6	50,9	19,5	\mathbf{st}	m	
40,0	41,1	18,9	\mathbf{st}	m	
60.4	31,9	7,7	s	\mathbf{st}	
69.4	22.8	7,8	s	\mathbf{st}	
77,6	14,4	8,0	s	\mathbf{st}	
74,3	3,9	21,8	\mathbf{st}	m	
72,1	0	27,9	$^{\mathrm{st}}$		

Tabelle 10. Analysenergebnisse und Phasen. Versuchsbedingungen: 1100 °C im stickstoffärmeren Systembereich

st = Stark, m = mittel, s = schwach.

ungewöhnliche, Abweichung von der *Vegard*schen Regel auf den antiferromagnetischen Charakter der Phase CrN zurückzuführen ist. In der Tat konnten *Ducastelle* u. a.¹⁹ in der Nähe von $V_{0,25}$ Cr_{0,75}N magnetische Anomalien feststellen, die sie mit einer Ordnung oder wenigstens Teilordnung der Vanadin- und Chromatome zu erklären versuchten.

Die Gitterabmessungen der (V,Cr)N-Phase sind außer vom V:Cr-Verhältnis auch noch wesentlich vom Stickstoffgehalt abhängig: mit abnehmendem Stickstoffgehalt wird der Gitterparameter kleiner. In Abb. 3 sind innerhalb des homogenen Phasenfeldes (V,Cr)N die Isoparameterlinien wiedergegeben.

Eine Reihe von Proben im Bereich des Zweiphasenfeldes $(V.Cr)_2N$ —(V.Cr) lassen vermuten. daß auch die Phasen V_2N und Cr_2N lückenlose Mischbarkeit aufweisen. Die Zahl der Proben reicht allerdings nicht aus, um die Konoden und die Phasengrenzen festzulegen. Auf Grund der vorliegenden Daten über die Randsysteme kann jedoch ein Vorschlag für das ternäre System V—Cr—N (Abb. 5) ausgearbeitet werden, wobei die Lage der Konoden nach der Methode von $Rudy^{20}$ aus der relativen thermodynamischen Stabilität der binären Randphasen abgeschätzt werden kann.

Literatur

- ¹ R. Kieffer und F. Benesovsky, Hartstoffe, Wien: Springer. 1963.
- ² E. Rudy, Compendium of Phase Diagram Data, AFML-TR-65-2 Part V Air Force Mat. Lab. Wright Patterson AFB Ohio.
- ³ R. Kieffer, H. Nowotny, P. Ettmayer und G. Dufck, Metall 26, 701 (1972).
- ^{3^a} J. Gatterer, G. Dufek, P. Ettmayer und R. Kieffer, Mh. Chem. 106, 1137 (1975).
- ¹ R. Kieffer, P. Ettmayer und F. Petter, Mh. Chem. 102, 1182 (1971).
- ⁵ P. Ettmayer, Mh. Chem. 102, 858 (1971).
- ⁶ D. H. Jack und K. H. Jack, J. Iron Steel Inst. 210 790 (1972).
- 7 O. N. Carlson, D. T. Eash und A. L. Eustice, in: Reactive Metals, S. 277. New York: Interscience, 1959.
- ⁸ G. Hörz, J. Less-Common Metals 35, 207 (1974).
- ⁹ G. Brauer und W. D. Schnell, J. Less-Common Metals 6, 326 (1964).
- ¹⁰ H. Hahn, Z. anorg. Chem. **258**, 58 (1949).
- ¹¹ E. Fromm und E. Gebhardt. Gase und Kohlenstoff in Metallen. Berlin-Heidelberg-New York: Springer, 1976.
- ¹² W. Rostoker und A. Yamamoto, Trans. Amer. Soc. Met. 42, 520 (1954).
- ¹³ K. Schwerdtfeger, Trans. AIME 239, 1432 (1967).
- ¹⁴ S. Eriksson, Jernkont. Ann. 118, 530 (1934).
- ¹⁵ T. Mills, J. Less-Common Metals 22, 373 (1970), 23, 317 (1971), 26, 223 (1972).
- ¹⁶ P. Ettmayer, H. Priemer und R. Kieffer, Metall 23, 307 (1969).
- ¹⁷ P. Ettmayer und R. Kieffer, Radex-Rundschau 1970, 192.
- ¹⁸ G. Paesold, K. Müller und R. Kieffer, Z. anal. Chem. 232, 531 (1967).
- ¹⁹ F. Ducastelle, P. Lacour-Gayet und P. Costa, Propriétés Magnétiques des Alliages VN-CrN, IV International Conference on Solid Compounds of Transition Elements. Genf 1973.
- ²⁰ E. Rudy, Z. Metallkde. 54, 112, 213 (1963).